gmsh-TingyuanDoc  0.1
An Open-Source Timing-driven Analytical Mixed-size FPGA Placer
GaussQuadratureTri.cpp File Reference
#include <vector>
#include "GaussIntegration.h"
#include "GaussLegendre1D.h"
Include dependency graph for GaussQuadratureTri.cpp:

Go to the source code of this file.

Functions

static std::vector< IntPt * > GQTGL (40, nullptr)
 
IntPtgetGQTPts (int order, bool forceTensorRule)
 
int getNGQTPts (int order, bool forceTensorRule)
 

Variables

IntPt GQT1 [1]
 
IntPt GQT2 [3]
 
IntPt GQT3 [4]
 
IntPt GQT4 [6]
 
IntPt GQT5 [7]
 
IntPt GQT6 [12]
 
IntPt GQT7 [13]
 
IntPt GQT8 [16]
 
IntPtGQT [9] = {GQT1, GQT1, GQT2, GQT3, GQT4, GQT5, GQT6, GQT7, GQT8}
 
int GQTnPt [9] = {1, 1, 3, 4, 6, 7, 12, 13, 16}
 
IntPt triP1Solin [1]
 
IntPt triP2Solin [3]
 
IntPt triP3Solin [4]
 
IntPt triP4Solin [6]
 
IntPt triP5Solin [7]
 
IntPt triP6Solin [12]
 
IntPt triP7Solin [13]
 
IntPt triP8Solin [16]
 
IntPt triP9Solin [19]
 
IntPt triP10Solin [25]
 
IntPt triP11Solin [27]
 
IntPt triP12Solin [33]
 
IntPt triP13Solin [37]
 
IntPt triP14Solin [42]
 
IntPt triP15Solin [48]
 
IntPt triP16Solin [52]
 
IntPt triP17Solin [61]
 
IntPt triP18Solin [70]
 
IntPt triP19Solin [73]
 
IntPt triP20Solin [79]
 
static IntPtGQTSolin [21]
 
static int GQTnPtSolin [21]
 

Function Documentation

◆ getGQTPts()

IntPt* getGQTPts ( int  order,
bool  forceTensorRule 
)

Definition at line 889 of file GaussQuadratureTri.cpp.

Referenced by gaussIntegration::get(), getGQPriPts(), MTriangle::getIntegrationPoints(), and gaussIntegration::getTriangle().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ getNGQTPts()

int getNGQTPts ( int  order,
bool  forceTensorRule 
)

◆ GQTGL()

static std::vector<IntPt *> GQTGL ( 40  ,
nullptr   
)
static

Referenced by getGQTPts().

Here is the caller graph for this function:

Variable Documentation

◆ GQT

IntPt* GQT[9] = {GQT1, GQT1, GQT2, GQT3, GQT4, GQT5, GQT6, GQT7, GQT8}

Definition at line 89 of file GaussQuadratureTri.cpp.

◆ GQT1

IntPt GQT1[1]
Initial value:
= {
{{0.333333333333333, 0.333333333333333, 0.}, 0.500000000000000}}

Definition at line 10 of file GaussQuadratureTri.cpp.

◆ GQT2

IntPt GQT2[3]
Initial value:
= {
{{0.166666666666667, 0.166666666666667, 0.}, 0.166666666666667},
{{0.666666666666667, 0.166666666666667, 0.}, 0.166666666666667},
{{0.166666666666667, 0.666666666666667, 0.}, 0.166666666666667}}

Definition at line 12 of file GaussQuadratureTri.cpp.

◆ GQT3

IntPt GQT3[4]
Initial value:
= {
{{0.333333333333333, 0.333333333333333, 0.}, -0.281250000000000},
{{0.600000000000000, 0.200000000000000, 0.}, +0.260416666666667},
{{0.200000000000000, 0.600000000000000, 0.}, +0.260416666666667},
{{0.200000000000000, 0.200000000000000, 0.}, +0.260416666666667}}

Definition at line 17 of file GaussQuadratureTri.cpp.

◆ GQT4

IntPt GQT4[6]
Initial value:
= {
{{0.816847572980459, 0.091576213509771, 0.}, 0.054975871827661},
{{0.091576213509771, 0.816847572980459, 0.}, 0.054975871827661},
{{0.091576213509771, 0.091576213509771, 0.}, 0.054975871827661},
{{0.108103018168070, 0.445948490915965, 0.}, 0.111690794839005},
{{0.445948490915965, 0.108103018168070, 0.}, 0.111690794839005},
{{0.445948490915965, 0.445948490915965, 0.}, 0.111690794839005}}

Definition at line 23 of file GaussQuadratureTri.cpp.

◆ GQT5

IntPt GQT5[7]
Initial value:
= {
{{0.333333333333333, 0.333333333333333, 0.}, 0.112500000000000},
{{0.797426985353087, 0.101286507323456, 0.}, 0.062969590272414},
{{0.101286507323456, 0.797426985353087, 0.}, 0.062969590272414},
{{0.101286507323456, 0.101286507323456, 0.}, 0.062969590272414},
{{0.470142064105115, 0.059715871789770, 0.}, 0.066197076394253},
{{0.059715871789770, 0.470142064105115, 0.}, 0.066197076394253},
{{0.470142064105115, 0.470142064105115, 0.}, 0.066197076394253}}

Definition at line 31 of file GaussQuadratureTri.cpp.

◆ GQT6

IntPt GQT6[12]
Initial value:
= {
{{0.873821971016996, 0.063089014491502, 0.}, 0.025422453185104},
{{0.063089014491502, 0.873821971016996, 0.}, 0.025422453185104},
{{0.063089014491502, 0.063089014491502, 0.}, 0.025422453185104},
{{0.501426509658179, 0.249286745170910, 0.}, 0.058393137863189},
{{0.249286745170910, 0.501426509658179, 0.}, 0.058393137863189},
{{0.249286745170910, 0.249286745170910, 0.}, 0.058393137863189},
{{0.636502499121399, 0.310352451033785, 0.}, 0.041425537809187},
{{0.310352451033785, 0.636502499121399, 0.}, 0.041425537809187},
{{0.636502499121399, 0.053145049844816, 0.}, 0.041425537809187},
{{0.310352451033785, 0.053145049844816, 0.}, 0.041425537809187},
{{0.053145049844816, 0.310352451033785, 0.}, 0.041425537809187},
{{0.053145049844816, 0.636502499121399, 0.}, 0.041425537809187}}

Definition at line 40 of file GaussQuadratureTri.cpp.

◆ GQT7

IntPt GQT7[13]
Initial value:
= {
{{0.333333333333333, 0.333333333333333, 0.}, -0.074785022233841},
{{0.479308067841920, 0.260345966079040, 0.}, +0.087807628716604},
{{0.260345966079040, 0.479308067841920, 0.}, +0.087807628716604},
{{0.260345966079040, 0.260345966079040, 0.}, +0.087807628716604},
{{0.869739794195568, 0.065130102902216, 0.}, +0.026673617804419},
{{0.065130102902216, 0.869739794195568, 0.}, +0.026673617804419},
{{0.065130102902216, 0.065130102902216, 0.}, +0.026673617804419},
{{0.048690315425316, 0.312865496004874, 0.}, +0.038556880445128},
{{0.312865496004874, 0.048690315425316, 0.}, +0.038556880445128},
{{0.638444188569810, 0.048690315425316, 0.}, +0.038556880445128},
{{0.048690315425316, 0.638444188569810, 0.}, +0.038556880445128},
{{0.312865496004874, 0.638444188569810, 0.}, +0.038556880445128},
{{0.638444188569810, 0.312865496004874, 0.}, +0.038556880445128}
}

Definition at line 54 of file GaussQuadratureTri.cpp.

◆ GQT8

IntPt GQT8[16]
Initial value:
= {
{{0.333333333333333, 0.333333333333333, 0.}, 0.072157803838894},
{{0.081414823414554, 0.459292588292723, 0.}, 0.047545817133643},
{{0.459292588292723, 0.081414823414554, 0.}, 0.047545817133643},
{{0.459292588292723, 0.459292588292723, 0.}, 0.047545817133643},
{{0.658861384496480, 0.170569307751760, 0.}, 0.051608685267359},
{{0.170569307751760, 0.658861384496480, 0.}, 0.051608685267359},
{{0.170569307751760, 0.170569307751760, 0.}, 0.051608685267359},
{{0.898905543365938, 0.050547228317031, 0.}, 0.016229248811599},
{{0.050547228317031, 0.898905543365938, 0.}, 0.016229248811599},
{{0.050547228317031, 0.050547228317031, 0.}, 0.016229248811599},
{{0.008394777409958, 0.728492392955404, 0.}, 0.013615157087217},
{{0.728492392955404, 0.008394777409958, 0.}, 0.013615157087217},
{{0.263112829634638, 0.008394777409958, 0.}, 0.013615157087217},
{{0.008394777409958, 0.263112829634638, 0.}, 0.013615157087217},
{{0.263112829634638, 0.728492392955404, 0.}, 0.013615157087217},
{{0.728492392955404, 0.263112829634638, 0.}, 0.013615157087217}}

Definition at line 71 of file GaussQuadratureTri.cpp.

◆ GQTnPt

int GQTnPt[9] = {1, 1, 3, 4, 6, 7, 12, 13, 16}

Definition at line 90 of file GaussQuadratureTri.cpp.

◆ GQTnPtSolin

int GQTnPtSolin[21]
static
Initial value:
= {1, 1, 3, 4, 6, 7, 12, 13, 16, 19, 25,
27, 33, 37, 42, 48, 52, 61, 70, 73, 79}

Definition at line 885 of file GaussQuadratureTri.cpp.

Referenced by getNGQTPts().

◆ GQTSolin

◆ triP10Solin

IntPt triP10Solin[25]
Initial value:
= {
{{0.3333333333330, 0.3333333333330, 0.}, 0.04540899519140},
{{0.4855776333840, 0.4855776333840, 0.}, 0.01836297887825},
{{0.4855776333840, 0.0288447332327, 0.}, 0.01836297887825},
{{0.0288447332327, 0.4855776333840, 0.}, 0.01836297887825},
{{0.1094815754850, 0.1094815754850, 0.}, 0.02266052971775},
{{0.1094815754850, 0.7810368490300, 0.}, 0.02266052971775},
{{0.7810368490300, 0.1094815754850, 0.}, 0.02266052971775},
{{0.3079398387640, 0.5503529418210, 0.}, 0.03637895842270},
{{0.5503529418210, 0.1417072194150, 0.}, 0.03637895842270},
{{0.1417072194150, 0.3079398387640, 0.}, 0.03637895842270},
{{0.3079398387640, 0.1417072194150, 0.}, 0.03637895842270},
{{0.5503529418210, 0.3079398387640, 0.}, 0.03637895842270},
{{0.1417072194150, 0.5503529418210, 0.}, 0.03637895842270},
{{0.2466725606400, 0.7283239045970, 0.}, 0.01416362126555},
{{0.7283239045970, 0.0250035347627, 0.}, 0.01416362126555},
{{0.0250035347627, 0.2466725606400, 0.}, 0.01416362126555},
{{0.2466725606400, 0.0250035347627, 0.}, 0.01416362126555},
{{0.7283239045970, 0.2466725606400, 0.}, 0.01416362126555},
{{0.0250035347627, 0.7283239045970, 0.}, 0.01416362126555},
{{0.0668032510122, 0.9236559335870, 0.}, 0.00471083348185},
{{0.9236559335870, 0.0095408154003, 0.}, 0.00471083348185},
{{0.0095408154003, 0.0668032510122, 0.}, 0.00471083348185},
{{0.0668032510122, 0.0095408154003, 0.}, 0.00471083348185},
{{0.9236559335870, 0.0668032510122, 0.}, 0.00471083348185},
{{0.0095408154003, 0.9236559335870, 0.}, 0.00471083348185}}

Quadrature rule for an interpolation of order 10 on the triangle

Definition at line 249 of file GaussQuadratureTri.cpp.

◆ triP11Solin

IntPt triP11Solin[27]
Initial value:
= {
{{+0.5346110482710, +0.5346110482710, 0.}, 0.00046350316448},
{{-0.0692220965415, +0.5346110482710, 0.}, 0.00046350316448},
{{+0.5346110482710, -0.0692220965415, 0.}, 0.00046350316448},
{{+0.3989693029660, +0.3989693029660, 0.}, 0.03857476745740},
{{+0.2020613940680, +0.3989693029660, 0.}, 0.03857476745740},
{{+0.3989693029660, +0.2020613940680, 0.}, 0.03857476745740},
{{+0.2033099004310, +0.2033099004310, 0.}, 0.02966148869040},
{{+0.5933801991370, +0.2033099004310, 0.}, 0.02966148869040},
{{+0.2033099004310, +0.5933801991370, 0.}, 0.02966148869040},
{{+0.1193509122830, +0.1193509122830, 0.}, 0.01809227025170},
{{+0.7612981754350, +0.1193509122830, 0.}, 0.01809227025170},
{{+0.1193509122830, +0.7612981754350, 0.}, 0.01809227025170},
{{+0.0323649481113, +0.0323649481113, 0.}, 0.00682986550135},
{{+0.9352701037770, +0.0323649481113, 0.}, 0.00682986550135},
{{+0.0323649481113, +0.9352701037770, 0.}, 0.00682986550135},
{{+0.5932012134280, +0.3566206482610, 0.}, 0.02616855598110},
{{+0.0501781383105, +0.5932012134280, 0.}, 0.02616855598110},
{{+0.3566206482610, +0.0501781383105, 0.}, 0.02616855598110},
{{+0.0501781383105, +0.3566206482610, 0.}, 0.02616855598110},
{{+0.3566206482610, +0.5932012134280, 0.}, 0.02616855598110},
{{+0.5932012134280, +0.0501781383105, 0.}, 0.02616855598110},
{{+0.8074890031600, +0.1714889803040, 0.}, 0.01035382981955},
{{+0.0210220165362, +0.8074890031600, 0.}, 0.01035382981955},
{{+0.1714889803040, +0.0210220165362, 0.}, 0.01035382981955},
{{+0.0210220165362, +0.1714889803040, 0.}, 0.01035382981955},
{{+0.1714889803040, +0.8074890031600, 0.}, 0.01035382981955},
{{+0.8074890031600, +0.0210220165362, 0.}, 0.01035382981955}}

Quadrature rule for an interpolation of order 11 on the triangle

Definition at line 282 of file GaussQuadratureTri.cpp.

◆ triP12Solin

IntPt triP12Solin[33]

Quadrature rule for an interpolation of order 12 on the triangle

Definition at line 317 of file GaussQuadratureTri.cpp.

◆ triP13Solin

IntPt triP13Solin[37]

Quadrature rule for an interpolation of order 13 on the triangle

Definition at line 358 of file GaussQuadratureTri.cpp.

◆ triP14Solin

IntPt triP14Solin[42]

Quadrature rule for an interpolation of order 14 on the triangle

Definition at line 403 of file GaussQuadratureTri.cpp.

◆ triP15Solin

IntPt triP15Solin[48]

Quadrature rule for an interpolation of order 15 on the triangle

Definition at line 453 of file GaussQuadratureTri.cpp.

◆ triP16Solin

IntPt triP16Solin[52]

Quadrature rule for an interpolation of order 16 on the triangle

Definition at line 509 of file GaussQuadratureTri.cpp.

◆ triP17Solin

IntPt triP17Solin[61]

Quadrature rule for an interpolation of order 17 on the triangle

Definition at line 569 of file GaussQuadratureTri.cpp.

◆ triP18Solin

IntPt triP18Solin[70]

Quadrature rule for an interpolation of order 18 on the triangle

Definition at line 638 of file GaussQuadratureTri.cpp.

◆ triP19Solin

IntPt triP19Solin[73]

Quadrature rule for an interpolation of order 19 on the triangle

Definition at line 716 of file GaussQuadratureTri.cpp.

◆ triP1Solin

IntPt triP1Solin[1]
Initial value:
= {
{{0.333333333333333, 0.333333333333333, 0.}, 0.500000000000000}}

Quadrature rule for an interpolation of order 1 on the triangle

Definition at line 96 of file GaussQuadratureTri.cpp.

◆ triP20Solin

IntPt triP20Solin[79]

Quadrature rule for an interpolation of order 20 on the triangle

Definition at line 797 of file GaussQuadratureTri.cpp.

◆ triP2Solin

IntPt triP2Solin[3]
Initial value:
= {
{{0.166666666666667, 0.166666666666667, 0.}, 0.166666666666667},
{{0.166666666666667, 0.666666666666667, 0.}, 0.166666666666667},
{{0.666666666666667, 0.166666666666667, 0.}, 0.166666666666667}}

Quadrature rule for an interpolation of order 2 on the triangle

Definition at line 105 of file GaussQuadratureTri.cpp.

◆ triP3Solin

IntPt triP3Solin[4]
Initial value:
= {
{{0.333333333333333, 0.333333333333333, 0.}, -0.281250000000000},
{{0.200000000000000, 0.200000000000000, 0.}, 0.260416666666667},
{{0.200000000000000, 0.600000000000000, 0.}, 0.260416666666667},
{{0.600000000000000, 0.200000000000000, 0.}, 0.260416666666667}}

Quadrature rule for an interpolation of order 3 on the triangle

Definition at line 116 of file GaussQuadratureTri.cpp.

◆ triP4Solin

IntPt triP4Solin[6]
Initial value:
= {
{{0.445948490915965, 0.445948490915965, 0.}, 0.111690794839005},
{{0.445948490915965, 0.108103018168070, 0.}, 0.111690794839005},
{{0.108103018168070, 0.445948490915965, 0.}, 0.111690794839005},
{{0.091576213509771, 0.091576213509771, 0.}, 0.054975871827661},
{{0.091576213509771, 0.816847572980459, 0.}, 0.054975871827661},
{{0.816847572980459, 0.091576213509771, 0.}, 0.054975871827661}}

Quadrature rule for an interpolation of order 4 on the triangle

Definition at line 128 of file GaussQuadratureTri.cpp.

◆ triP5Solin

IntPt triP5Solin[7]
Initial value:
= {
{{0.333333333333333, 0.333333333333333, 0.}, 0.112500000000000},
{{0.470142064105115, 0.470142064105115, 0.}, 0.066197076394253},
{{0.470142064105115, 0.059715871789770, 0.}, 0.066197076394253},
{{0.059715871789770, 0.470142064105115, 0.}, 0.066197076394253},
{{0.101286507323456, 0.101286507323456, 0.}, 0.062969590272414},
{{0.101286507323456, 0.797426985353087, 0.}, 0.062969590272414},
{{0.797426985353087, 0.101286507323456, 0.}, 0.062969590272414}}

Quadrature rule for an interpolation of order 5 on the triangle

Definition at line 142 of file GaussQuadratureTri.cpp.

◆ triP6Solin

IntPt triP6Solin[12]
Initial value:
= {
{{0.249286745170910, 0.249286745170910, 0.}, 0.058393137863189},
{{0.249286745170910, 0.501426509658179, 0.}, 0.058393137863189},
{{0.501426509658179, 0.249286745170910, 0.}, 0.058393137863189},
{{0.063089014491502, 0.063089014491502, 0.}, 0.025422453185104},
{{0.063089014491502, 0.873821971016996, 0.}, 0.025422453185104},
{{0.873821971016996, 0.063089014491502, 0.}, 0.025422453185104},
{{0.310352451033785, 0.636502499121399, 0.}, 0.041425537809187},
{{0.636502499121399, 0.053145049844816, 0.}, 0.041425537809187},
{{0.053145049844816, 0.310352451033785, 0.}, 0.041425537809187},
{{0.310352451033785, 0.053145049844816, 0.}, 0.041425537809187},
{{0.636502499121399, 0.310352451033785, 0.}, 0.041425537809187},
{{0.053145049844816, 0.636502499121399, 0.}, 0.041425537809187}}

Quadrature rule for an interpolation of order 6 on the triangle

Definition at line 157 of file GaussQuadratureTri.cpp.

◆ triP7Solin

IntPt triP7Solin[13]
Initial value:
= {
{{0.333333333333333, 0.333333333333333, 0.}, -0.074785022233841},
{{0.260345966079040, 0.260345966079040, 0.}, 0.087807628716604},
{{0.260345966079040, 0.479308067841920, 0.}, 0.087807628716604},
{{0.479308067841920, 0.260345966079040, 0.}, 0.087807628716604},
{{0.065130102902216, 0.065130102902216, 0.}, 0.026673617804419},
{{0.065130102902216, 0.869739794195568, 0.}, 0.026673617804419},
{{0.869739794195568, 0.065130102902216, 0.}, 0.026673617804419},
{{0.312865496004874, 0.638444188569810, 0.}, 0.038556880445128},
{{0.638444188569810, 0.048690315425316, 0.}, 0.038556880445128},
{{0.048690315425316, 0.312865496004874, 0.}, 0.038556880445128},
{{0.312865496004874, 0.048690315425316, 0.}, 0.038556880445128},
{{0.638444188569810, 0.312865496004874, 0.}, 0.038556880445128},
{{0.048690315425316, 0.638444188569810, 0.}, 0.038556880445128}}

Quadrature rule for an interpolation of order 7 on the triangle

Definition at line 177 of file GaussQuadratureTri.cpp.

◆ triP8Solin

IntPt triP8Solin[16]
Initial value:
= {
{{0.333333333333333, 0.333333333333333, 0.}, 0.072157803838894},
{{0.459292588292723, 0.459292588292723, 0.}, 0.047545817133643},
{{0.459292588292723, 0.081414823414554, 0.}, 0.047545817133643},
{{0.081414823414554, 0.459292588292723, 0.}, 0.047545817133643},
{{0.170569307751760, 0.170569307751760, 0.}, 0.051608685267359},
{{0.170569307751760, 0.658861384496480, 0.}, 0.051608685267359},
{{0.658861384496480, 0.170569307751760, 0.}, 0.051608685267359},
{{0.050547228317031, 0.050547228317031, 0.}, 0.016229248811599},
{{0.050547228317031, 0.898905543365938, 0.}, 0.016229248811599},
{{0.898905543365938, 0.050547228317031, 0.}, 0.016229248811599},
{{0.263112829634638, 0.728492392955404, 0.}, 0.013615157087217},
{{0.728492392955404, 0.008394777409958, 0.}, 0.013615157087217},
{{0.008394777409958, 0.263112829634638, 0.}, 0.013615157087217},
{{0.263112829634638, 0.008394777409958, 0.}, 0.013615157087217},
{{0.728492392955404, 0.263112829634638, 0.}, 0.013615157087217},
{{0.008394777409958, 0.728492392955404, 0.}, 0.013615157087217}}

Quadrature rule for an interpolation of order 8 on the triangle

Definition at line 198 of file GaussQuadratureTri.cpp.

◆ triP9Solin

IntPt triP9Solin[19]
Initial value:
= {
{{0.3333333333330, 0.3333333333333, 0.}, 0.04856789814140},
{{0.4896825191990, 0.4896825191990, 0.}, 0.01566735011355},
{{0.4896825191990, 0.0206349616025, 0.}, 0.01566735011355},
{{0.0206349616025, 0.4896825191990, 0.}, 0.01566735011355},
{{0.4370895914930, 0.4370895914930, 0.}, 0.03891377050240},
{{0.4370895914930, 0.1258208170140, 0.}, 0.03891377050240},
{{0.1258208170140, 0.4370895914930, 0.}, 0.03891377050240},
{{0.1882035356190, 0.1882035356190, 0.}, 0.03982386946360},
{{0.1882035356190, 0.6235929287620, 0.}, 0.03982386946360},
{{0.6235929287620, 0.1882035356190, 0.}, 0.03982386946360},
{{0.0447295133945, 0.0447295133945, 0.}, 0.01278883782935},
{{0.0447295133945, 0.9105409732110, 0.}, 0.01278883782935},
{{0.9105409732110, 0.0447295133945, 0.}, 0.01278883782935},
{{0.2219629891610, 0.7411985987840, 0.}, 0.02164176968865},
{{0.7411985987840, 0.0368384120547, 0.}, 0.02164176968865},
{{0.0368384120547, 0.2219629891610, 0.}, 0.02164176968865},
{{0.2219629891610, 0.0368384120547, 0.}, 0.02164176968865},
{{0.7411985987840, 0.2219629891610, 0.}, 0.02164176968865},
{{0.0368384120547, 0.7411985987840, 0.}, 0.02164176968865}}

Quadrature rule for an interpolation of order 9 on the triangle

Definition at line 222 of file GaussQuadratureTri.cpp.

triP10Solin
IntPt triP10Solin[25]
Definition: GaussQuadratureTri.cpp:249
triP6Solin
IntPt triP6Solin[12]
Definition: GaussQuadratureTri.cpp:157
triP11Solin
IntPt triP11Solin[27]
Definition: GaussQuadratureTri.cpp:282
triP9Solin
IntPt triP9Solin[19]
Definition: GaussQuadratureTri.cpp:222
triP20Solin
IntPt triP20Solin[79]
Definition: GaussQuadratureTri.cpp:797
triP18Solin
IntPt triP18Solin[70]
Definition: GaussQuadratureTri.cpp:638
triP17Solin
IntPt triP17Solin[61]
Definition: GaussQuadratureTri.cpp:569
triP15Solin
IntPt triP15Solin[48]
Definition: GaussQuadratureTri.cpp:453
triP4Solin
IntPt triP4Solin[6]
Definition: GaussQuadratureTri.cpp:128
triP12Solin
IntPt triP12Solin[33]
Definition: GaussQuadratureTri.cpp:317
triP3Solin
IntPt triP3Solin[4]
Definition: GaussQuadratureTri.cpp:116
triP8Solin
IntPt triP8Solin[16]
Definition: GaussQuadratureTri.cpp:198
triP19Solin
IntPt triP19Solin[73]
Definition: GaussQuadratureTri.cpp:716
triP14Solin
IntPt triP14Solin[42]
Definition: GaussQuadratureTri.cpp:403
triP16Solin
IntPt triP16Solin[52]
Definition: GaussQuadratureTri.cpp:509
triP13Solin
IntPt triP13Solin[37]
Definition: GaussQuadratureTri.cpp:358
triP2Solin
IntPt triP2Solin[3]
Definition: GaussQuadratureTri.cpp:105
triP1Solin
IntPt triP1Solin[1]
Definition: GaussQuadratureTri.cpp:96
triP7Solin
IntPt triP7Solin[13]
Definition: GaussQuadratureTri.cpp:177
triP5Solin
IntPt triP5Solin[7]
Definition: GaussQuadratureTri.cpp:142