gmsh-TingyuanDoc  0.1
An Open-Source Timing-driven Analytical Mixed-size FPGA Placer
adaptiveData.cpp File Reference
#include <math.h>
#include <list>
#include <set>
#include <algorithm>
#include "adaptiveData.h"
#include "PViewDataGModel.h"
#include "Plugin.h"
#include "OS.h"
#include "GmshDefines.h"
Include dependency graph for adaptiveData.cpp:

Go to the source code of this file.

Functions

template<class T >
static void cleanElement ()
 
static void computeShapeFunctions (fullMatrix< double > *coeffs, fullMatrix< double > *eexps, double u, double v, double w, fullVector< double > *sf, fullVector< double > *tmp)
 
static void computeShapeFunctionsPyramid (fullMatrix< double > *coeffs, fullMatrix< double > *eexps, double u, double v, double w, fullVector< double > *sf, fullVector< double > *tmp)
 

Function Documentation

◆ cleanElement()

template<class T >
static void cleanElement ( )
static

Definition at line 59 of file adaptiveData.cpp.

◆ computeShapeFunctions()

static void computeShapeFunctions ( fullMatrix< double > *  coeffs,
fullMatrix< double > *  eexps,
double  u,
double  v,
double  w,
fullVector< double > *  sf,
fullVector< double > *  tmp 
)
static

Definition at line 66 of file adaptiveData.cpp.

Referenced by adaptiveElements< T >::init().

Here is the call graph for this function:
Here is the caller graph for this function:

◆ computeShapeFunctionsPyramid()

static void computeShapeFunctionsPyramid ( fullMatrix< double > *  coeffs,
fullMatrix< double > *  eexps,
double  u,
double  v,
double  w,
fullVector< double > *  sf,
fullVector< double > *  tmp 
)
static

Bergot space is characterised by polynomials $ \mathcal B_{ijk} = \mathcal P_i \left(\frac{\xi }{1-\zeta}\right) \mathcal P_j \left(\frac{\eta}{1-\zeta}\right) \left(1-\zeta\right)^{max(i,j)} \mathcal P^{2 max(i,j),0}_k \left(2 \zeta -1\right)~|~i,j \leq p, k \leq p - max(i,j) $ and hence by the "monomials" $ \mu_{ijk} = \left(\frac{\xi }{1-\zeta}\right)^i \left(\frac{\eta}{1-\zeta}\right)^j \left(1-\zeta\right)^{max(i,j)} \zeta^k~|~i,j \leq p~,~k \leq p-max(i,j) $

Definition at line 90 of file adaptiveData.cpp.

Here is the call graph for this function: