gmsh-TingyuanDoc  0.1
An Open-Source Timing-driven Analytical Mixed-size FPGA Placer
Trackball.cpp
Go to the documentation of this file.
1 /*
2  * (c) Copyright 1993, 1994, Silicon Graphics, Inc.
3  * ALL RIGHTS RESERVED
4  * Permission to use, copy, modify, and distribute this software for
5  * any purpose and without fee is hereby granted, provided that the above
6  * copyright notice appear in all copies and that both the copyright notice
7  * and this permission notice appear in supporting documentation, and that
8  * the name of Silicon Graphics, Inc. not be used in advertising
9  * or publicity pertaining to distribution of the software without specific,
10  * written prior permission.
11  *
12  * THE MATERIAL EMBODIED ON THIS SOFTWARE IS PROVIDED TO YOU "AS-IS"
13  * AND WITHOUT WARRANTY OF ANY KIND, EXPRESS, IMPLIED OR OTHERWISE,
14  * INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR
15  * FITNESS FOR A PARTICULAR PURPOSE. IN NO EVENT SHALL SILICON
16  * GRAPHICS, INC. BE LIABLE TO YOU OR ANYONE ELSE FOR ANY DIRECT,
17  * SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY
18  * KIND, OR ANY DAMAGES WHATSOEVER, INCLUDING WITHOUT LIMITATION,
19  * LOSS OF PROFIT, LOSS OF USE, SAVINGS OR REVENUE, OR THE CLAIMS OF
20  * THIRD PARTIES, WHETHER OR NOT SILICON GRAPHICS, INC. HAS BEEN
21  * ADVISED OF THE POSSIBILITY OF SUCH LOSS, HOWEVER CAUSED AND ON
22  * ANY THEORY OF LIABILITY, ARISING OUT OF OR IN CONNECTION WITH THE
23  * POSSESSION, USE OR PERFORMANCE OF THIS SOFTWARE.
24  *
25  * US Government Users Restricted Rights
26  * Use, duplication, or disclosure by the Government is subject to
27  * restrictions set forth in FAR 52.227.19(c)(2) or subparagraph
28  * (c)(1)(ii) of the Rights in Technical Data and Computer Software
29  * clause at DFARS 252.227-7013 and/or in similar or successor
30  * clauses in the FAR or the DOD or NASA FAR Supplement.
31  * Unpublished-- rights reserved under the copyright laws of the
32  * United States. Contractor/manufacturer is Silicon Graphics,
33  * Inc., 2011 N. Shoreline Blvd., Mountain View, CA 94039-7311.
34  *
35  * OpenGL(TM) is a trademark of Silicon Graphics, Inc.
36  */
37 /*
38  * Trackball code:
39  *
40  * Implementation of a virtual trackball.
41  * Implemented by Gavin Bell, lots of ideas from Thant Tessman and
42  * the August '88 issue of Siggraph's "Computer Graphics," pp. 121-129.
43  *
44  * Vector manip code:
45  *
46  * Original code from:
47  * David M. Ciemiewicz, Mark Grossman, Henry Moreton, and Paul Haeberli
48  *
49  * Much mucking with by:
50  * Gavin Bell
51  */
52 /*
53  * Modified for inclusion in Gmsh (rotmatrix as a vector +
54  * float->double + optional use of hyperbolic sheet for z-rotation)
55  */
56 #include <cmath>
57 #include "Trackball.h"
58 #include "Context.h"
59 #include <iostream>
60 /*
61  * This size should really be based on the distance from the center of
62  * rotation to the point on the object underneath the mouse. That
63  * point would then track the mouse as closely as possible. This is a
64  * simple example, though, so that is left as an Exercise for the
65  * Programmer.
66  */
67 #define TRACKBALLSIZE (.8)
68 
69 /*
70  * Local function prototypes (not defined in trackball.h)
71  */
72 static double tb_project_to_sphere(double, double, double);
73 static void normalize_quat(double [4]);
74 using namespace std ;
75 
76 void
77 vzero(double *v)
78 {
79  v[0] = 0.0;
80  v[1] = 0.0;
81  v[2] = 0.0;
82 }
83 
84 void
85 vset(double *v, double x, double y, double z)
86 {
87  v[0] = x;
88  v[1] = y;
89  v[2] = z;
90 }
91 
92 void
93 vsub(const double *src1, const double *src2, double *dst)
94 {
95  dst[0] = src1[0] - src2[0];
96  dst[1] = src1[1] - src2[1];
97  dst[2] = src1[2] - src2[2];
98 }
99 
100 void
101 vcopy(const double *v1, double *v2)
102 {
103  int i;
104  for (i = 0 ; i < 3 ; i++)
105  v2[i] = v1[i];
106 }
107 
108 void
109 vcross(const double *v1, const double *v2, double *cross)
110 {
111  double temp[3];
112 
113  temp[0] = (v1[1] * v2[2]) - (v1[2] * v2[1]);
114  temp[1] = (v1[2] * v2[0]) - (v1[0] * v2[2]);
115  temp[2] = (v1[0] * v2[1]) - (v1[1] * v2[0]);
116  vcopy(temp, cross);
117 }
118 
119 double
120 vlength(const double *v)
121 {
122  return sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
123 }
124 
125 void
126 vscale(double *v, double div)
127 {
128  v[0] *= div;
129  v[1] *= div;
130  v[2] *= div;
131 }
132 
133 void
134 vnormal(double *v)
135 {
136  vscale(v,1.0/vlength(v));
137 }
138 
139 double
140 vdot(const double *v1, const double *v2)
141 {
142  return v1[0]*v2[0] + v1[1]*v2[1] + v1[2]*v2[2];
143 }
144 
145 void
146 vadd(const double *src1, const double *src2, double *dst)
147 {
148  dst[0] = src1[0] + src2[0];
149  dst[1] = src1[1] + src2[1];
150  dst[2] = src1[2] + src2[2];
151 }
152 
153 /*
154  * Ok, simulate a track-ball. Project the points onto the virtual
155  * trackball, then figure out the axis of rotation, which is the cross
156  * product of P1 P2 and O P1 (O is the center of the ball, 0,0,0)
157  * Note: This is a deformed trackball-- is a trackball in the center,
158  * but is deformed into a hyperbolic sheet of rotation away from the
159  * center. This particular function was chosen after trying out
160  * several variations.
161  *
162  * It is assumed that the arguments to this routine are in the range
163  * (-1.0 ... 1.0)
164  */
165 void
166 trackball(double q[4], double p1x, double p1y, double p2x, double p2y)
167 {
168  double a[3]; /* Axis of rotation */
169  double phi; /* how much to rotate about axis */
170  double p1[3], p2[3], d[3];
171  double t;
172 
173  if (p1x == p2x && p1y == p2y) {
174  /* Zero rotation */
175  vzero(q);
176  q[3] = 1.0;
177  return;
178  }
179 
180  /*
181  * First, figure out z-coordinates for projection of P1 and P2 to
182  * deformed sphere
183  */
184  vset(p1,p1x,p1y,tb_project_to_sphere(TRACKBALLSIZE,p1x,p1y));
185  vset(p2,p2x,p2y,tb_project_to_sphere(TRACKBALLSIZE,p2x,p2y));
186  /*
187  * Now, we want the cross product of P1 and P2
188  */
189  vcross(p2,p1,a);
190 
191  /*
192  * Figure out how much to rotate around that axis.
193  */
194  vsub(p1,p2,d);
195  if (CTX::instance()->trackballHyperbolicSheet)
196  t = vlength(d) / (2.0*TRACKBALLSIZE);
197  else
198  t = vlength(d);
199 
200  /*
201  * Avoid problems with out-of-control values...
202  */
203  if (t > 1.0) t = 1.0;
204  if (t < -1.0) t = -1.0;
205  phi = 2.0 * asin(t);
206 
207  axis_to_quat(a,phi,q);
208 }
209 
210 /*
211  * Given an axis and angle, compute quaternion.
212  */
213 void axis_to_quat(double a[3], double phi, double q[4])
214 {
215  vnormal(a);
216  vcopy(a,q);
217  vscale(q,sin(phi/2.0));
218  q[3] = cos(phi/2.0);
219 }
220 
221 /*
222  * Project an x,y pair onto a sphere of radius r OR a hyperbolic sheet
223  * if we are away from the center of the sphere.
224  */
225 static double
226 tb_project_to_sphere(double r, double x, double y)
227 {
228  double d, t, z;
229 
230  d = sqrt(x*x + y*y);
231 
232  if (CTX::instance()->trackballHyperbolicSheet) {
233  if (d < r * 0.70710678118654752440) {
234  // Inside sphere
235  z = sqrt(r*r - d*d);
236  }
237  else {
238  // On hyperbola
239  t = r / 1.41421356237309504880;
240  z = t*t / d;
241  }
242  }
243  else{
244  if (d < r ) {
245  z = sqrt(r*r - d*d);
246  } else {
247  z = 0.;
248  }
249  }
250 
251  return z;
252 }
253 
254 /*
255  * Given two rotations, e1 and e2, expressed as quaternion rotations,
256  * figure out the equivalent single rotation and stuff it into dest.
257  *
258  * This routine also normalizes the result every RENORMCOUNT times it is
259  * called, to keep error from creeping in.
260  *
261  * NOTE: This routine is written so that q1 or q2 may be the same
262  * as dest (or each other).
263  */
264 
265 #define RENORMCOUNT 97
266 
267 void
268 add_quats(double q1[4], double q2[4], double dest[4])
269 {
270  static int count=0;
271  double t1[4], t2[4], t3[4];
272  double tf[4];
273 
274  vcopy(q1,t1);
275  vscale(t1,q2[3]);
276 
277  vcopy(q2,t2);
278  vscale(t2,q1[3]);
279 
280  vcross(q2,q1,t3);
281  vadd(t1,t2,tf);
282  vadd(t3,tf,tf);
283  tf[3] = q1[3] * q2[3] - vdot(q1,q2);
284 
285  dest[0] = tf[0];
286  dest[1] = tf[1];
287  dest[2] = tf[2];
288  dest[3] = tf[3];
289 
290  if (++count > RENORMCOUNT) {
291  count = 0;
292  normalize_quat(dest);
293  }
294 }
295 
296 /*
297  * Quaternions always obey: a^2 + b^2 + c^2 + d^2 = 1.0
298  * If they don't add up to 1.0, dividing by their magnitued will
299  * renormalize them.
300  *
301  * Note: See the following for more information on quaternions:
302  *
303  * - Shoemake, K., Animating rotation with quaternion curves, Computer
304  * Graphics 19, No 3 (Proc. SIGGRAPH'85), 245-254, 1985.
305  * - Pletinckx, D., Quaternion calculus as a basic tool in computer
306  * graphics, The Visual Computer 5, 2-13, 1989.
307  */
308 static void
309 normalize_quat(double q[4])
310 {
311  int i;
312  double mag;
313 
314  mag = (q[0]*q[0] + q[1]*q[1] + q[2]*q[2] + q[3]*q[3]);
315  for (i = 0; i < 4; i++) q[i] /= mag;
316 }
317 
318 /*
319  * Build a rotation matrix, given a quaternion rotation.
320  *
321  */
322 void
323 build_rotmatrix(double m[16], double q[4])
324 {
325  m[0] = 1.0 - 2.0 * (q[1] * q[1] + q[2] * q[2]);
326  m[1] = 2.0 * (q[0] * q[1] - q[2] * q[3]);
327  m[2] = 2.0 * (q[2] * q[0] + q[1] * q[3]);
328  m[3] = 0.0;
329 
330  m[4] = 2.0 * (q[0] * q[1] + q[2] * q[3]);
331  m[5]= 1.0 - 2.0 * (q[2] * q[2] + q[0] * q[0]);
332  m[6] = 2.0 * (q[1] * q[2] - q[0] * q[3]);
333  m[7] = 0.0;
334 
335  m[8] = 2.0 * (q[2] * q[0] - q[1] * q[3]);
336  m[9] = 2.0 * (q[1] * q[2] + q[0] * q[3]);
337  m[10] = 1.0 - 2.0 * (q[1] * q[1] + q[0] * q[0]);
338  m[11] = 0.0;
339 
340  m[12] = 0.0;
341  m[13] = 0.0;
342  m[14] = 0.0;
343  m[15] = 1.0;
344 }
trackball
void trackball(double q[4], double p1x, double p1y, double p2x, double p2y)
Definition: Trackball.cpp:166
vzero
void vzero(double *v)
Definition: Trackball.cpp:77
add_quats
void add_quats(double q1[4], double q2[4], double dest[4])
Definition: Trackball.cpp:268
vdot
double vdot(const double *v1, const double *v2)
Definition: Trackball.cpp:140
cross
void cross(const double *pt0, const double *pt1, const double *pt2, double *cross)
Definition: gmshLevelset.cpp:210
vset
void vset(double *v, double x, double y, double z)
Definition: Trackball.cpp:85
tb_project_to_sphere
static double tb_project_to_sphere(double, double, double)
Definition: Trackball.cpp:226
CTX::instance
static CTX * instance()
Definition: Context.cpp:122
vadd
void vadd(const double *src1, const double *src2, double *dst)
Definition: Trackball.cpp:146
vnormal
void vnormal(double *v)
Definition: Trackball.cpp:134
vcopy
void vcopy(const double *v1, double *v2)
Definition: Trackball.cpp:101
axis_to_quat
void axis_to_quat(double a[3], double phi, double q[4])
Definition: Trackball.cpp:213
TRACKBALLSIZE
#define TRACKBALLSIZE
Definition: Trackball.cpp:67
RENORMCOUNT
#define RENORMCOUNT
Definition: Trackball.cpp:265
vcross
void vcross(const double *v1, const double *v2, double *cross)
Definition: Trackball.cpp:109
vscale
void vscale(double *v, double div)
Definition: Trackball.cpp:126
Trackball.h
build_rotmatrix
void build_rotmatrix(double m[16], double q[4])
Definition: Trackball.cpp:323
vlength
double vlength(const double *v)
Definition: Trackball.cpp:120
Context.h
std
Definition: picojson.h:1135
z
const double z
Definition: GaussQuadratureQuad.cpp:56
normalize_quat
static void normalize_quat(double[4])
Definition: Trackball.cpp:309
vsub
void vsub(const double *src1, const double *src2, double *dst)
Definition: Trackball.cpp:93