Benchmark Details
As mentioned in the introduction, we collect the latest practical open-source benchmarks from various domains.
Benchmarks | Rosetta FaceDetection | SpooNN | OptimSoC | MiniMap2 | OpenPiton | MemN2N | BLSTM | Rosetta DigitRecog |
#LUT | 68945 | 63095 | 186183 | 407586 | 180388 | 184997 | 118967 | 151636 |
#FF | 56987 | 70987 | 248983 | 252624 | 111966 | 84694 | 54690 | 105580 |
#CARRY | 4978 | 2091 | 1715 | 19826 | 1712 | 11528 | 2762 | 1970 |
#Mux | 2177 | 217 | 27037 | 180 | 13696 | 4466 | 36210 | 4662 |
#LUTRAM | 255 | 251 | 901 | 251 | 752 | 3500 | 1147 | 251 |
#DSP | 101 | 165 | 51 | 528 | 58 | 312 | 258 | 1 |
#BRAM | 141 | 208 | 218 | 283 | 147 | 148 | 812 | 379 |
#Cell | 134450 | 137937 | 468150 | 681889 | 309145 | 289721 | 215101 | 265775 |
#Macro | 3582 | 1135 | 21882 | 8746 | 8278 | 5775 | 14651 | 3061 |
#siteForMacro | 55666 | 23079 | 89004 | 191263 | 48066 | 118960 | 171822 | 55754 |
MacroRatio | 40% | 16% | 19% | 28% | 15% | 41% | 80% | 21% |
- Rosetta FaceDetection/DigitRecog: Y. Zhou, U. Gupta, S. Dai, R. Zhao, N. Srivastava, H. Jin, J. Featherston, Y.-H. Lai, G. Liu, G. A. Velasquez et al., “Rosetta: A realistic high-level synthesis benchmark suite for software programmable fpgas,” in Proceedings of the 2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, 2018, pp. 269–278.
- SpooNN: K. Kara, “Spoonn: Fpga-based neural network inference library,” 2018.
- OptimSoC: S. Wallentowitz, P. Wagner, M. Tempelmeier, T. Wild, and A. Herkersdorf, “Open tiled manycore system-on-chip,” arXiv preprint arXiv:1304.5081, 2013.
- MiniMap2: L. Guo, J. Lau, Z. Ruan, P. Wei, and J. Cong, “Hardware acceleration of long read pairwise overlapping in genome sequencing: A race between fpga and gpu,” in 2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM). IEEE, 2019, pp. 127–135.
- OpenPiton: J. Balkind, M. McKeown, Y. Fu, T. Nguyen, Y. Zhou, A. Lavrov, M. Shahrad, A. Fuchs, S. Payne, X. Liang et al., “Openpiton: An open source manycore research framework,” ACM SIGPLAN Notices, vol. 51, no. 4, pp. 217–232, 2016.
- MemN2N: S. Sukhbaatar, A. Szlam, J. Weston, and R. Fergus, “End-to-end memory networks,” arXiv preprint arXiv:1503.08895, 2015.
- BLSTM: V. Rybalkin, N. Wehn, M. R. Yousefi, and D. Stricker, “Hardware architecture of bidirectional long short-term memory neural network for optical character recognition,” in Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017. IEEE, 2017, pp. 1390–1395.